Self-Adaptive Ensemble Classifier for Handling Complex Concept Drift
نویسندگان
چکیده
In increasing number of real world applications, data are presented as streams that may evolve over time and this is known by concept drift. Handling concept drift through ensemble classifiers has received a great interest in last decades. The success of these ensemble methods relies on their diversity. Accordingly, various diversity techniques can be used like block-based data, weighting-data or filtering-data. Each of these diversity techniques is efficient to handle certain characteristics of drift. However, when the drift is complex, they fail to efficiently handle it. Complex drifts may present a mixture of several characteristics (speed, severity, influence zones in the feature space, etc) which may vary over time. In this case, drift handling is more complicated and requires new detection and updating tools. For this purpose, a new ensemble approach, namely EnsembleEDIST2, is presented. It combines the three diversity techniques in order to take benefit from their advantages and outperform their limits. Additionally, it makes use of EDIST2, as drift detection mechanism, in order to monitor the ensemble’s performance and detect changes. EnsembleEDIST2 was tested through different scenarios of complex drift generated from synthetic and real datasets. This diversity combination allows EnsembleEDIST2 to outperform similar ensemble approaches in term of accuracy rate, and present stable behaviors in handling different scenarios of complex drift.
منابع مشابه
Algorithm to handle Concept Drifting in Data Stream Mining
Data Stream Mining is the evolving field of research. Mining continuous data streams brings unique opportunities but also new challenges. This paper will describe and evaluate the proposed classifier which uses ensemble classifier along with the boosting concept. Adaptive windowing is also used for handling the data stream. Empirical study will show that the proposed classifier takes less memor...
متن کاملAdaptive Convolutional ELM For Concept Drift Handling in Online Stream Data
In big data era, the data continuously generated and its distribution may keep changes overtime. These challenges in online stream of data are known as concept drift. In this paper, we proposed the Adaptive Convolutional ELM method (ACNNELM) as enhancement of Convolutional Neural Network (CNN) with a hybrid Extreme Learning Machine (ELM) model plus adaptive capability. This method is aimed for ...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملAn Ensemble Classifier for Drifting Concepts
This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the...
متن کاملDynamic integration of classifiers for handling concept drift
In the real world concepts are often not stable but change with time. A typical example of this in the biomedical context is antibiotic resistance, where pathogen sensitivity may change over time as new pathogen strains develop resistance to antibiotics that were previously effective. This problem, known as concept drift, complicates the task of learning a model from data and requires special a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017